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Abstract
We study a family of chaotic maps with limit cases—the tent map and the cusp
map (the cusp family). We discuss the spectral properties of the corresponding
Frobenius–Perron operator in different function spaces including spaces of
analytical functions and study numerically the eigenvalues and eigenfunctions.

PACS numbers: 05.45.−a, 02.30.Tb

1. Introduction

Resonances of dynamical systems are manifestations of the statistical properties of chaotic
systems and describe the decay of correlations. Hence it is not surprising that they are studied
very intensively. We refer the readers to recent reviews on this vast subject [1, 2]. Resonances
appear also in the generalized spectra [3–5] of the evolution operators [6, 7] of chaotic maps.

The theory of resonances has been recently developed in terms of locally convex
topological vector spaces [3–5]. This reflects the fact that dynamical systems are defined
in terms of the space of observables and the evolution law. For different classes of observables
the same evolution law may have different resonances, i.e. different rates of approach to
equilibrium. However, once the class of observables is chosen the resonance structure is
unique [5, 8]. Therefore we have proposed [5, 8, 9] that physical equivalence should reflect
identical physical properties, i.e. rates of decay of correlations.

For many classes of maps, e.g. expanding maps, there exist some results about existence
of resonances and their estimations [2]. However, for more complicated maps each case needs
a separate consideration and results are sparse. Their study has attracted a lot of interest.

For example, the so-called cusp map [10] on the interval [−1, 1]

S(x) = 1 − 2
√

|x|
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is an approximation of the Poincaré section of the Lorenz attractor [11, 12]. The absolutely
continuous invariant probability measure of the cusp map has density

ρ(x) = 1 − x
2
.

The cusp map is a limit case of the cusp family [13–15]:

Sε: [−1, 1] → [−1, 1] ε ∈ [0, 1/2] where Sε(x) = 1 − √
1 − 4ε(1 − ε − 2|x|)

2ε
for ε ∈ (0, 1/2] S0(x) = lim

ε↓0
Sε(x) = 1 − 2|x|. (1)

The map with ε = 0 is the well-known tent map [16] while the map with ε = 1/2 is the cusp
map [10].

The statistical analysis of dynamical systems is based on the Koopman and the Frobenius–
Perron operators. Let Y be a set andAbe a σ -algebra of measurable subsets of Y. The Koopman
operator of a measurable map S: Y → Y acts on functions f : Y → C as follows:

Vf (x) = f (Sx).

The Frobenius–Perron operator (FPO) U is defined with respect to a probability reference
measure ν on (Y,A). For 1 � p � ∞ the FPO U :Lp(Y,A, ν) → Lp(Y,A, ν) is the dual of
the operator V : Lq(Y,A, ν) → Lq(Y,A, ν), where 1

p
+ 1
q

= 1:

(Uρ|f ) = (ρ|Vf ) (ρ|f ) =
∫
ν(dy)ρ(y)f (y).

Usually one considers maps which possess an absolutely continuous invariant measure
µ: µ(S−1(�)) = µ(�) for any measurable set � ∈ A.

A map S is called an exact endomorphism when any measurable set � ∈ A of initial data
with ν[�] 	= 0, eventually covers the whole space Y [6, 7]:

lim
n→∞ ν[Sn�] = ν[Y ]. (2)

For an exact endomorphism, the absolutely continuous invariant measure µ is unique.
Definition (2) is equivalent to the property that any probability density ρ ∈ L1(Y,A, ν)
approaches the equilibrium density ρeq:

lim
n→∞ ‖Unρ − ρeq‖ = 0.

The FPO U is defined here with respect to the reference measure ν and ρeq = dµ
dν . If the

reference measure is the invariant measure µ then ρeq = 1. In both cases 1 is an eigenvalue of
the FPO:

Uρeq = ρeq.

In the case of dynamical systems on the interval [α, β], the reference measure is usually either
the normalized Lebesgue measure or the invariant absolutely continuous probability measure.
In our paper we use the invariant measure as the reference one.

The Frobenius–Perron operatorUε of each member Sε of the cusp family (1) with respect
to the invariant measure µε is

Uερ(x) = (
1
2 − εaε(x)

)
ρ(aε(x)) +

(
1
2 + εaε(x)

)
ρ(−aε(x)) (3)

where

aε(x) = 1 − x
2

− ε

2
(1 − x2).
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The absolutely continuous invariant probability measures µε for the cusp family Sε have
densities [13]

ρε(x) = 1
2 − εx. (4)

Each member Sε of the cusp family is an exact system. For ε 	= 1/2 it follows directly
from theorem 4 in section 8, ch 10 of [7], which gives sufficient conditions of exactness for
piecewise monotonic maps. The exactness of the cusp map has been hinted by Hemmer [10]
referring to the work of Lasota and Yorke [17]. The proposed hint seems to be irrelevant as
the cusp map has a parabolic fixed point.

For the cusp map one should consider the so-called induced map [18–20] on the segment
[
√

8 − 3, 3 − √
8]. This map satisfies the conditions of the above-mentioned theorem and

therefore is exact. Since the exactness for a map and its induced map are equivalent [18–20],
we obtain the exactness of the cusp map.

The objective of this paper is to study the resonances of the cusp family (1). In section
2 we present some definitions and results for the spectral theory of operators necessary for
the study of the FPO of the cusp family. In section 3 we present results about the spectral
properties of the FPO generated by the cusp family in different function spaces. In section
4 we analyse the spectral properties in spaces of analytic functions. In order to analyse the
eigenvalues and eigenfunctions of the cusp family, we perform a numerical study in section
5. We show that the cusp family does not have a spectrum in the form rn, where n ∈ N,
r ∈ R, in the space of analytical functions, at least in the vicinity of the tent map. We
analyse the behaviour of the eigenvalues in the vicinity of the cusp map. The behaviour of the
eigenfunctions is also discussed.

2. Normal points of linear operators

LetA be a linear continuous operator in a locally convex topological linear space�. The point
z ∈ C is said to be regular if the operator A − zI has a continuous inverse, I is the identity
operator. The set of all nonregular points is the spectrum of A, denoted as σ(A). The point
z ∈ C is said to be a normal point [21] if � admits a decomposition into a topological direct
sum [22] of two closed linear subspaces

� = �0 ⊕�1 (5)

such that �0 is finite dimensional, A(�j) ⊆ �j for j ∈ {0, 1}, (A− zI)∣∣
�1

: �1 → �1 has a
continuous inverse and there exists n ∈ N such that (A− zI)n(�0) = {0}.

Evidently the point z is regular if and only if it is normal and �0 = {0}. A normal point
for which �0 	= {0} is called a normal eigenvalue.

It is well known [21, 23] that for any normal point z the decomposition (5) is unique.
Moreover, the monotonic sequences of spaces ker(A− zI)n and (A− zI)n(�) stabilize and

�0 =
∞⋃
n=1

ker(A− zI)n �1 =
∞⋂
n=1

(A− zI)n(�). (6)

For a normal point z we denote the eigenspace�0 corresponding to the eigenvalue z as

E(z,A) = �0. (7)

Note that if z is regular then E(z,A) = {0}. According to (6) the finite-dimensional space
E(z,A) is spanned by the eigenvectors and the principal vectors of A associated with the
eigenvalue z. In the case E(z,A) 	= {0} the dimension of E(z,A) is the multiplicity of the
normal eigenvalue z.
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If the spectrum of A is either finite or a sequence converging to 0 and any non-zero
element of σ(A) is a normal eigenvalue of A (this happens, e.g., for any compact operator on
a Banach space [23]), we can renumber the spectrum σ(A) as a sequence of eigenvalues of A,

zn n = 0, 1, 2, . . .

with the following properties:

(1) |zn+1| � |zn| for all n ∈ Z+

(2) if zn 	= 0 then zn ∈ σ(A)
(3) if z ∈ σ(A)\{0} then |{n ∈ Z+: zn(A) = z}| = dim E(z,A)
(4) if |zn| = |zn+1| then arg zn < arg zn+1

(8)

where arg z ∈ (−π, π] is the argument of the complex number z.

3. Spectral properties of the Frobenius–Perron operator in Lp and Ck

Let us introduce the following notation:

D̄(a, q) = {z ∈ C : |z− a| � q} D(a, q) = {z ∈ C : |z− a| < q}. (9)

For any p ∈ [1,+∞] we denote the Hardy space in the disc D(a, q) by Hp(a, q), i.e.
Hp(a, q) is the space of holomorphic functionsf :D(a, q)→ C, which belong toLp(D(a, q))
with respect to the Lebesgue measure. We endow this space with the Lp norm.

The operator UXε :X → X is the restriction of Uε to a locally convex function space X
such that Uε(X) ⊆ X. The spectrum of the operator UXε is denoted by σ

(
UXε

)
.

Proposition 1. Let ε ∈ [0, 1/2], X be either the Banach space C[−1, 1] or Lp([−1, 1], µε).
Then the spectrum σ

(
UXε

)
coincides with the closed unit disc D̄(0, 1). Moreover, any z from

the open unit disc D(0, 1) is an eigenvalue of UXε of infinite multiplicity. The point z = 1 is
an eigenvalue of multiplicity 1.

Proof. Since
∥∥UXε ∥∥ = 1 we have σ

(
UXε

) ⊆ D̄(0, 1). Let z ∈ D(0, 1). Consider the Koopman
operator of the cusp family Vε: X → X:

Vεf (x) = f (Sε(x)).
One can directly verify that the functions ψ ,

ψ(x) =
∞∑
k=0

zkV kε h (10)

where h(x) = g(x)(1 + 2εx) and g(x) is an odd function, are eigenfunctions of Uε:
Uεψ = zψ . As g is an arbitrary odd function, this proves that all points of D(0, 1) are
eigenvalues of UXε of infinite multiplicity. �

Remark 1. Formula (10) provides all the eigenfunctions of UXε with eigenvalue z.

Remark 2. Proposition 1 and its proof remain valid for the Frobenius–Perron operator U of
any continuous exact endomorphism (instead of h one should take any element of ker U ).

Proposition 2. Let ε ∈ [0, 1/2], n = 1, 2, . . . , X be the Banach space Cn[−1, 1]. Then
the spectrum σ

(
UXε

)
contains the closed disc D̄(0, (1/2 + ε)n+1), and any point of the open

disc D(0, (1/2 + ε)n+1) is a (non-normal) eigenvalue of UXε of infinite multiplicity. The set
S = σ

(
UXε

)\D̄(0, (1/2 + ε)n) is finite and any z ∈ S is a normal eigenvalue of UXε .
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Remark 3. Under the conditions of proposition 2 for any z ∈ S and any f ∈ E(z,UXε ) the
function f admits the analytic continuation to the discD(0, 1/ε−1) if ε ∈ (0, 1/2) and to the
whole complex plane if ε = 0. This can be proved by estimating the growth of the sequence

sn = supt∈[−1,1]

∥∥f (n)(t)∥∥.

Corollary 1. Let ε ∈ [0, 1/2), X = C∞[−1, 1] with the natural topology [22]. Then the
spectrum σ

(
UXε

)
is either finite or countable, 0 ∈ σ (UXε ) and any point z ∈ σ (UXε )\{0} is

a normal (and therefore isolated) eigenvalue of UXε . Moreover for any z ∈ σ (UXε )\{0} and
any f ∈ E(z,UXε ) the function f admits the analytic continuation to the disc D(0, 1/ε − 1)
if ε ∈ (0, 1/2) and to the whole complex plane if ε = 0.

Corollary 2. Let n = 1, 2, . . . ,∞ and X be the space Cn[−1, 1]. Then the spectrum σ
(
UX1/2

)
is the closed unit disc D̄(0, 1), and any point of the open unit disc D(0, 1) is an eigenvalue of
UX1/2 of infinite multiplicity.

Proof of proposition 2. Let us define the sequence tn by the formula

t0 = 1 tn+1 = −aε(tn) n = 1, 2, . . . . (11)

It is easy to see that t1 = 0, the sequence tn is strictly decreasing and

tn = −1 +
4

n
+O

(
1

n2

)
for ε = 1/2,

tn = −1 + c(ε)

(
1

2
+ ε

)n
+O

((
1

2
+ ε

)2n
)

for ε ∈ [0, 1/2)
(12)

where c(ε) = 2 − 4ε +O(ε2) is a constant.
Let z ∈ C. Pick an arbitrary function φ: (0, 1] → C. Define recurrently the function

fφ : (−1, 1] → C as follows

fφ(x) = φ(x) for x ∈ (0, 1] = (t1, t0]

fφ(x) = 2zf
(
a−1
ε (−x)

)
1 − 2εx

− 1 + 2εx

1 − 2εx
f (−x) for x ∈ (tn+1, tn] n = 1, 2 . . . .

(13)

It is straightforward to see that fφ is the unique function f : (−1, 1] → C for which f |(0,1] = φ

and UXε f (x) = zf (x) for all x ∈ (−1, 1]. Let now φ be an element of C∞[0, 1] such that
the support of φ (i.e. the closure in [0,1] of the set {t :φ(t) 	= 0}) is contained in the interval
(0,−t2). It is clear that fφ ∈ C∞(−1, 1]. Using formula (11) and the asymptotics (12), for
any z ∈ C, |z| < (1/2 + ε)n+1 one can verify that

lim
t↓−1

f
(j)

φ (t) = 0 j = 0, 1, . . . , n. (14)

Therefore, putting fφ(−1) = 0, we see that fφ ∈ X = Cn[−1, 1] and UXε fφ = zfφ . Hence
σ
(
UXε

)
contains D̄(0, (1/2 + ε)n+1) and any point of D(0, (1/2 + ε)n+1) is an eigenvalue of

UXε of infinite multiplicity. �

The second part of proposition 2 follows from Ruelle’s results on spectra of positive
transfer operators (see [2], theorem 2.5 and exercise 2.9).

4. Spectral properties of the operator Uε in spaces of analytic functions

The spectral properties of the operatorUε in spaces of analytical functions differ considerably
depending on the choice of the space and on the values ε = 1/2 or ε 	= 1/2. Furthermore, not
all of these properties are known yet.
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Proposition 3. Let ε ∈ (0, 1/2), q ∈ (1, 1/ε − 1) and X be the Hardy space H2(0, q). Then

(i) operator UXε is nuclear
(ii) eigenvalues zn of UXε and the corresponding eigenspaces E(zn, UXε ) do not depend on q

(iii) eigenvalues zn satisfy the inequality

|zn| � 1.5cn where c = c(ε) =
√

1/2 +
√
ε(1 − ε) < 1. (15)

We remind the reader [21] that a bounded operator A is nuclear or trace-class if trA is
finite. An operator A is nuclear iff the absolute value operator |A| = √

A+A is nuclear. If an
operator A is compact, then the eigenvalues sn(A), n = 0, 1, 2 . . ., of |A| are known as the
s-numbers of the operator A.

Proof of proposition 3. It is easy to show that for any r > 1

α(r) = sup
|z|=r

|aε(z)| = 1
2 (1 − ε + r + εr2).

The function α is continuous and strictly increasing on the interval (1, 1/ε− 1), and α(r) < r
for any r ∈ (1, 1/ε − 1). Put q ′ = α−1(q) > q . From the definition of the operator
Uε(3), it follows that Uε is a linear continuous operator from H2(0, q) to H2(0, q ′) with
norm less than or equal to 1 + εα(q). Thus UXε is the composition of Uε and the operator
J defining the embedding of H2(0, q ′) into H2(0, q). The s-numbers of the operator J are
sn(J ) = (q/q ′)n. Since

∑
n sn(J ) < ∞, the operator J is nuclear. As for any bounded

operators A, B, sn(AB) � ‖A‖sn(B) [21], the operator UXε is nuclear with s-numbers
sn
(
UXε

)
� (1 + εα(q))(q/q ′)n.

From remark 3 follows that the eigenvalues zn of UXε and the eigenspaces E(zn, UXε ) do
not depend on q and coincide with the eigenvalues and eigenspaces of UC

∞[−1,1]
ε .

From Weyl’s inequality [24] we have

|zn|n+1 �
n∏
k=0

|zk| �
n∏
k=0

sk
(
UXε

)
� (1 + εα(q))n+1(q/q ′)(n+1)n/2

and therefore

zn � (1 + εα(q))(q/q ′)n/2. (16)

The ratio q/q ′ is minimal for q ′ = √
1/ε − 1 and is equal to 1/2 +

√
ε(1 − ε). For this value

of q ′ we have 1 + εα(q) � 1 +
√
ε − ε2 � 1.5. Therefore inequality (16) for q ′ = √

1/ε − 1
implies (15). �

The case ε = 1/2 is much more difficult and so far there exist very few results on the
spectral properties of the Frobenius–Perron operators of the maps with parabolic neutral fixed
points. We would like to point out the result of Rugh [25], who considered the Frobenius–
Perron operators of piece-wise analytical maps, which are expanding everywhere except one
parabolic fixed point. Namely, he constructed a specific map-dependent Banach space of
analytical functions, where the spectrum of the FPO consists of the segment [0, 1] and some
isolated normal eigenvalues. This space is in fact the image of L1[0,+∞) with respect to
some map-dependent integral transformation (similar to the Laplace transform). This idea
applied to the cusp map allows us to verify that the FPO U1/2 has similar spectral properties
in certain weighted Hardy spaces in discs D(α, 1 + α), 0 < α < 1.

The result of Rugh is very interesting since it provides the first example of a Banach space
of smooth functions, where the spectrum of the Frobenius–Perron operator of the cusp map is
non-trivial. Note that the functions of Rugh’s space are analytic in all points of the segment
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except the parabolic fixed point (−1 in our case). However, we should note that the spectrum
of the FPO of a map S in spaces of analytic functions with singularity at a fixed point of S
may differ considerably from the spectrum in spaces of everywhere analytic functions. We
illustrate this statement for the simplest expanding map F0, which is the tent map.

Proposition 4. Let p ∈ [1,+∞], 0 < α < 1 and X = Hp(α, 1 + α). Then the spectrum
σ
(
UX0

)
depends on p. Namely, σ

(
UX0

)
is the union of the disc D̄

(
0, 22/p−1

)
and some set of

(isolated) normal eigenvalues.

Proof. Evidently, UX0 = A + B, where

Af (x) = 1

2
f

(
1 − x

2

)
Bf (x) = 1

2
f

(
x − 1

2

)
.

Since the image of the operator B is contained in the space Hq(α, β), where β =
min{1 + 5α, 3 − α} > 1 + α, the operator B is nuclear and therefore compact.

Let us estimate now the norm of the operator A. Let f ∈ X. Then

‖Af ‖q =
∫

D(α,1+α)

(
1

2

∣∣∣∣f
(
x + iy − 1

2

)∣∣∣∣
)q

dx dy =
∫

D(α−1,(1+α)/2)

4

2q
|f (x + iy)|q dx dy

� 1

2q−2

∫
D(α,1+α)

|f |q dx dy = 1

2q−2
‖f ‖q .

Therefore ‖A‖ � 2
2
q
−1. On the other hand, one can verify that Afλ = 2−1−λfλ, where

fλ(x) = (x + 1)λ and fλ ∈ X if and only if

Re λ > − 2

q
⇐⇒ ∣∣2−1−λ∣∣ � 2

2
q
−1
.

Hence, the open disc D
(

0, 2
2
q
−1
)

is contained in the spectrum of A. Since ‖A‖ � 2
2
q
−1,

we find that σ(A) = D̄
(

0, 2
2
q
−1
)

.

Since the operator B is compact and UX0 = A +B, the theorem on holomorphic operator-

functions ([21], chapter I) implies that the spectrum of UX0 is the union of D̄
(

0, 2
2
q
−1
)

and

some (isolated) normal eigenvalues. �

Proposition 5. Let 0 < ν < 0.3 and X be the space of the functions f : (−1, 1] → C such
that the function gf (z) = f (−1 + 2−z), g: [−1,+∞)→ C admits the analytic continuation
to some element of the Hardy–Hilbert spaceH 2

R in the half-planeAν = {Re z > −1 − ν} (We
transfer the scalar product from the Hardy space H 2

R to X by the bijective linear transform
f �→ gf ). Then σ

(
UX0

) = [0, 1] ∪ S, where S consists of normal eigenvalues.

Remark 4. The space X of proposition 5 is a Hilbert space of functions analytic on the set
D(−1, c)\(−1 − c,−1] for some c = c(ν) > 2.

Proof of proposition 5. From the definition of the scalar product in X, the operator
T : X → H 2

R, Tf (x) = f (−1 + 2−x) is a unitary transformation. Therefore the operator

W = T U0T
−1 : H 2

R → H 2
R

and U0 are unitarily equivalent. From the definitions of T and U0 it follows thatW = A + B,
where

Af (x) = 1
2f (x + 1) Bf (x) = 1

2f
(− log2(2 + 2−y−1)

)
.
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It is straightforward to verify that the closure of the set
{− log2(2 + 2−y−1): y ∈ Aν

}
is a

compact subset of Aν . Hence, the operator B is nuclear and therefore compact. On the other
hand, the conventional Laplace transform and a linear change of variables provide a unitary
equivalence between the operator A and the operator of multiplication with the function e−t

acting on a certain weighted Sobolev space of functions on [0,+∞). Therefore the spectrum
of A is the segment [0, 1].

Since the operator B is compact, the theorem on holomorphic operator-functions [21]
implies that the spectrum ofUX0 , which is identical with the spectrum ofW , is the union of the
segment [0, 1] and some set of (isolated) normal eigenvalues. �

It is worth noting that the space constructed in propositions 4, 5 is obtained by a method
similar to the construction of Rugh [25]. Thus, it is not a priori clear what is the origin of
the ‘continuous spectrum’ [0, 1] obtained in [25]: the dynamical properties of the map or the
choice of the space.

In the space of real-analytical functions on [−1, 1], the point spectrum of the Frobenius–
Perron operatorU1/2 of the cusp map is {0, 1} [26], i.e. the eigenfunction equationU1/2f = zf

has non-zero analytic solutions only for z = 0 and z = 1. The proof of this result is technically
complicated. Here, we prove a weaker result which admits a much simpler proof. Namely,
we show that {0, 1} is the point spectrum of U1/2 in the space of entire functions.

Proposition 6. Let ε = 1/2, X be the space of entire functions. Then the spectrum of UXε
is the whole complex plane C and the point spectrum of UXε is the two-point set {0, 1}. The
eigenvalue 0 has infinite multiplicity, and the eigenvalue 1 has multiplicity 1.

Proof. The ergodicity of the map S1/2 implies the multiplicity 1 for the eigenvalue z = 1. The
null space of the operator U1/2 is

{f ∈ X: f (x) = (1 + x)g(x) : g is an odd function}.
Therefore 0 is an eigenvalue of U1/2 of infinite multiplicity. Let now z ∈ C\{0, 1}, ψ ∈ X
and U1/2ψ = zψ . The eigenvalue equation for x = 1 implies that ψ(−1) = 0. Therefore
ψ(x) = (1 + x)g(x) for some g ∈ X. Let ξ(x) = g(x) + g(−x). The eigenvalue equation
U1/2ψ = zψ in terms of the function ξ can be rewritten as

ξ

((x + 1

2

)2
)

= 32zξ(x)

x3 + 5x2 + 11x + 15
+
x3 − 5x2 + 11x − 15

x3 + 5x2 + 11x + 15
ξ

((x − 1

2

)2
)
. (17)

Let M(R) = max
|x|=R

|ξ(x)|, c ∈ (0,
√

2). It is easy to see that if x ∈ C, Re(x + 1)2 � 0,

Re x � 0, and R � |(x + 1)2/4| � R + c
√
R then, for sufficiently large R > 0, |x| � R and

|(x − 1)2/4| � R. Since ξ is even this fact together with formula (17) imply that

M(R +
√
R + 1/4) � M(R)(1 + 5/

√
R +O(1/R)) when R → +∞. (18)

Applying (18) to Rn = n2/4 and using the equality Rn+1 = Rn +
√
Rn + 1/4, we obtain

M(n2/4) � c1

n∏
k=1

(1 + 10/k +O(1/k2))

for some positive constant c1. Therefore M(n2/4) = O(n10), and M(R) = O(R5). This
estimation implies (see [27]) that ξ is a polynomial of degree at most 5. On the other hand,
using induction with respect to the degree of polynomial, one can show that there are no
polynomial solutions of equation (17). �
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Remark 5. A similar technique allows verification that for any z ∈ C, z 	= 0 the function
f (x) = x does not belong to the space U1/2(X), where X is the space of entire functions.
Therefore, the spectrum of UX1/2 is the whole complex plane.

5. Numerical results for the spectra

In the previous section we presented the general description of the spectrum of the operatorUε.
However, the eigenvalues and the eigenfunctions of the cusp family are not known explicitly.
So we should compute them numerically. In order to perform this calculation in the space of
the analytical functions, we use Taylor’s expansion

f (x) =
N∑
k=0

ckx
k. (19)

The eigenvalue problem Uεf (x) = zf (x) can be reformulated in terms of the coefficients ck:

Uεf (x) =
N∑
k=0

ckUεx
k =

N∑
k=0

ck
∑
p=0

apkx
p = z

N∑
k=0

ckx
k. (20)

As the operatorUε is nuclear, we can project the last expression on the subspace {xk}Nk=0. Now
the eigenvalue problem can be written as A�c = z�c, where {A}kp = akp, see (20).

The coefficients apk in (20) are equal to

apk =
{
(−1)pf (ε, k, p) k is even
(−1)p+12εf (ε, k + 1, p) k is odd

(21)

where the function f (ε, k, p) is defined as

f (ε, k, p) = 1

2k

p∑
l=0

(
k

l

)(
k

p − l
)
εl(1 − ε)k−l

and
(
k

l

)
= k!l!/(k − l)! is the binomial coefficient. The most precise and convenient way to

calculate the coefficients apk is the use of the recurrence relation

ap,k+2 = 1
4

{
(1 − ε)2ap,k + (2ε − 2)ap−1,k + (−2ε2 + 2ε + 1)ap−2,k − 2εap−3, k + ε2ap−4, k

}
.

This representation is much more accurate than the numerical integration used in [14] hence
it permits the use of longer expansion (19) without loss of accuracy.

It is worth noting that the matrix A is non-symmetric. Up to 2 × 103 terms in the
expansion (19) were used to get converged results. In order to check convergence, we use the
trace formula for the operator Uε. Namely, as for ε ∈ [0, 1/2) the operator Uε is nuclear, we
can calculate its trace by using the Grothendieck–Fredholm formula (see for example [2, 28]):

trUε =
∞∑
n=0

zn = 1

1/2 − ε − 2√
9 − 4ε(1 − ε) (22)

and compare this value with the numerical calculations.
In figure 1, ten maximal eigenvalues of the operatorUε are presented. Because of the very

good convergence of our numerical method for small ε, the asymptotics of the zn as ε → 0
can be numerically calculated:

zn+1

zn
= 1

4
+

(
2n− 1

2

)
ε +O(ε2). (23)

Hence the cusp family has neither spectrum in the form rn, where n ∈ N, r ∈ R, nor
combination of a few such spectra when ε 	= 0.
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Figure 1. Ten maximal eigenvalues as functions of ε.
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Figure 2. The second (a) and fourth (b) eigenfunctions for ε = 0 (the solid line), 0.25 (the
long-dashed line), 0.4 (the dashed line) and 0.48 (the short-dashed line).

Using relation (23), we can find a general formula for the eigenvalues when ε is small:

zn+1 = (
1
4

)n
(1 + 2n(2n + 1)ε +O(ε2)) n = 0, 1, 2, . . . . (24)

This result gives for the asymptotics of the trace

trUε = 4

3
+

104

27
ε +O(ε2) when ε → 0. (25)

Formula (25) coincides with the asymptotics of equation (22). This coincidence supports
strongly formulae (23), (24) which are obtained only numerically.

When ε → 1/2 and n is fixed, one can see that zn → 1. This result agrees with the
divergence of the trace. We have also checked that the eigenvalues have the asymptotics

zn = (1/2 + ε)n when ε → 1/2 (26)

that agrees with the asymptotics found in [14].
Let us now discuss the eigenfunction behaviour. In figures 2(a) and (b) we present the

second and fourth eigenfunctions, respectively, for few values of ε. One can easily see a
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concentration effect in the vicinity of −1 as ε → 1/2. The eigenfunctions tend to have the
support only at the point x = −1. This behaviour is in good agreement with the existence
of a ‘formal eigenfunction’ δ(x + 1) for ε = 0.5. Such behaviour of eigenfunctions supports
numerically the non-existence of a non-trivial (except for {0, 1}) spectrum for the cusp map
in the space of the real analytic functions [26] as the limit functions have a singularity at the
point −1.

6. Conclusions

The spectral properties of the cusp family (1) that ‘interpolates’ between the tent map and the
cusp map have been investigated in different function spaces. While some results (propositions
1, 2 and 6) about the spectrum of the cusp map have been proved, the general description for
different spaces of analytic functions is still unknown.

There are a few questions which are particularly interesting in this context. First,
the question about the asymptotics of the autocorrelation function for the cusp map. As
the resonance eigenvalues tend to unity, one can expect non-exponential decrease of the
autocorrelation function. The estimations in paper [15] show that the autocorrelation function
C(n) decreases as 1/nwhen n→ ∞. However, this conjecture is not yet analytically proved.
Another question addresses the choice of the space of analytic functions where the spectrum
of the FPO is naturally defined by the dynamics of the map. Moreover, our calculations and
the calculations of [14] show that the spectrum of the cusp family is real. While there are
some analytical results about the reality of the spectrum [29], they are not applicable to the
cusp family. Hence the question about the reality of the spectrum also remains open.
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